登錄/ 注冊

機器視覺系統|機器視覺軟件|工業相機選型|維視智造

機器視覺與機器人視覺系統研發制造商致力于打造中國機器視覺行業信賴品牌

全國咨詢熱線: 4000-400-860 維視集團資料下載人才招聘聯系維視

機器視覺表面缺陷檢測技術

返回列表 來源:維視智造 查看手機網址
掃一掃!機器視覺表面缺陷檢測技術掃一掃!
瀏覽:- 發布日期:2019-05-30 14:22:50【

表面缺陷是產品表面局部物理或化學性質不均勻的區域,如金屬表面的劃痕、斑點、孔洞,紙張表面的色差、壓痕,玻璃等非金屬表面的夾雜、破損、污點等等。表面缺陷不僅影響產品的美觀和舒適度,而且一般也會對其使用性能帶來不良影響,所以生產企業對產品的表面缺陷檢測非常重視,以便及時發現,從而有效控制產品質量,還可以根據檢測結果分析生產工藝中存在的某些問題,從而杜絕或減少缺陷品的產生,同時防止潛在的貿易糾份,維護企業榮譽。

人工檢測是產品表面缺陷的傳統檢測方法,該方法抽檢率低、準確性不高、實時性差、效率低、勞動強度大、受人工經驗和主觀因素的影響大,而基于機器視覺的檢測方法可以很大程度上克服上述弊端。

表面缺陷檢測

機器視覺技術是一種無接觸、無損傷的自動檢測技術,是實現設備自動化、智能化和精密控制的有效手段,具有安全可靠、光譜響應范圍寬、可在惡劣環境下長時間工作和生產效率高等突出優點。機器視覺檢測系統通過適當的光源和圖像傳感器(CCD攝像機)獲取產品的表面圖像,利用相應的圖像處理算法提取圖像的特征信息,然后根據特征信息進行表面缺陷的定位、識別、分級等判別和統計、存儲、查詢等操作;

機器視覺表面缺陷檢測系統基本組成

主要包括圖像獲取模塊、圖像處理模塊、圖像分析模塊、數據管理及人機接口模塊。

圖像獲取模塊由工業相機、光學鏡頭、光源及其夾持裝置等組成,其功能是完成產品表面圖像的采集。在光源的照明下,通過光學鏡頭將產品表面成像于相機傳感器上,光信號先轉換成電信號,進而轉換成計算機能處理的數字信號。目前工業用相機主要基于CCD或CMOS(complementary metal oxide semiconductor)芯片的相機。CCD是目前機器視覺最為常用的圖像傳感器。

機器視覺光源直接影響到圖像的質量,其作用是克服環境光干擾,保證圖像的穩定性,獲得對比度盡可能高的圖像。目前常用的光源有鹵素燈、熒光燈和發光二級管(LED)。LED光源以體積小、功耗低、響應速度快、發光單色性好、可靠性高、光均勻穩定、易集成等優點獲得了廣泛的應用。

由光源構成的照明系統按其照射方法可分為明場照明與暗場照明、結構光照明與頻閃光照明。明場與暗場主要描述相機與光源的位置關系,明場照明指相機直接接收光源在目標上的反射光,一般相機與光源異側分布,這種方式便于安裝;暗場照明指相機間接接收光源在目標上的散射光,一般相機與光源同側分布,它的優點是能獲得高對比度的圖像。結構光照明是將光柵或線光源等投射到被測物上,根據它們產生的畸變,解調出被測物的3維信息。頻閃光照明是將高頻率的光脈沖照射到物體上,攝像機拍攝要求與光源同步。

圖像處理模塊主要涉及圖像去噪、圖像增強與復原、缺陷的檢測和目標分割。由于現場環境、CCD圖像光電轉換、傳輸電路及電子元件都會使圖像產生噪聲,這些噪聲降低了圖像的質量從而對圖像的處理和分析帶來不良影響,所以要對圖像進行預處理以去噪。圖像增強目是針對給定圖像的應用場合,有目的地強調圖像的整體或局部特性,將原來不清晰的圖像變得清晰或強調某些感興趣的特征,擴大圖像中不同物體特征之間的差別,抑制不感興趣的特征,使之改善圖像質量、豐富信息量,加強圖像判讀和識別效果的圖像處理方法。圖像復原是通過計算機處理,對質量下降的圖像加以重建或復原的處理過程。圖像復原很多時候采用與圖像增強同樣的方法,但圖像增強的結果還需要下一階段來驗證;而圖像復原試圖利用退化過程的先驗知識,來恢復已被退化圖像的本來面目,如加性噪聲的消除、運動模糊的復原等。圖像分割的目的是把圖像中目標區域分割出來,以便進行下一步的處理。

圖像分析模塊主要涉及特征提取、特征選擇和圖像識別。

特征提取的作用是從圖像像素中提取可以描述目標特性的表達量,把不同目標間的差異映射到低維的特征空間,從而有利于壓縮數據量、提高識別率。表面缺陷檢測通常提取的特征有紋理特征、幾何形狀特征、顏色特征、變換系數特征等,用這些多信息融合的特征向量來區可靠地區分不同類型的缺陷;這些特征之間一般存在冗余信息,即并不能保證特征集是最優的,好的特征集應具備簡約性和魯棒性,為此,還需要進一步從特征集中選擇更有利于分類的特征,即特征的選擇。圖像識別主要根據提取的特征集來訓練分類器,使其對表面缺陷類型進行正確的分類識別。

數據管理及人機接口模塊可在顯示器上立即顯示缺陷類型、位置、形狀、大小,對圖像進行存儲、查詢、統計等。

機器視覺表面缺陷檢測主要包括2維檢測和3維檢測,前者是當前的主要表面缺陷檢測方式,也是本文的著重論述之處。

設備檢測

機器視覺在工業檢測、包裝印刷、食品工業、航空航天、生物醫學工程、軍事科技、智能交通、文字識別等領域得到了廣泛的應用。工業檢測領域是機器視覺應用中比重最大的領域,主要用于產品質量檢測、產品分類、產品包裝等,如:零件裝配完整性檢測,裝配尺寸精度檢測,位置/角度測量,零件識別,PCB板檢測,印刷品檢測,瓶蓋檢測,玻璃、煙草、棉花檢測,以及指紋、汽車牌照、人臉、條碼等識別。表面質量檢測系統是工業檢測的極其重要的組成部分,機器視覺表面缺陷檢測在許多行業開始應用,涉及鋼板等多種關系國計民生的行業和產品。

表面缺陷檢測視覺軟件系統

機器視覺軟件系統除具有圖像處理和分析功能外,還應具有界面友好、操作簡單、擴展性好、與圖像處理專用硬件兼容等優點。國外視覺檢測技術研究開展的較早,已涌現了許多較為成熟的商業化軟件,應該比較多的有HALCON、HexSight、Vision Pro、LEADTOOLS等[41]。

HALCON是德國MVtec公司開發的一套完善的標準的機器視覺算法包,擁有應用廣泛的機器視覺集成開發環境維視圖像開發定制軟件,在歐洲以及日本的工業界已經是公認具有最佳效能的Machine Vision軟件。HALCON的image processing library,由一千多個各自獨立的函數和底層的數據管理核心構成,其函數庫可以用C,C++,C#,Visual basic和Delphi等多種普通編程語言訪問。HALCON百余種工業相機和圖像采集卡提供接口,包括GenlCam,GigE和IIDC 1394。HALCO還具有強大的3維視覺處理能力,另外,自動算子并行處理(AOP)技術是HALCON的一個獨特性能。HALCON應用范圍涵蓋自動化檢測、醫學和生命科學,遙感探測,通訊和監控等眾多領域。

Adept公司出品的HexSight是一款高性能的、綜合性的視覺軟件開發包,它提供了穩定、可靠及準確定位和檢測零件的機器視覺底層函數。HexSight的定位工具是根據幾何特征、采用輪廓檢測技術來識別對象和模式。在圖像凌亂、亮度波動、圖像模糊和對象重疊等方面有顯著效果。HexSight能處理自由形狀的對象,并具有功能強大的去模糊算法。HexSight軟件包含一個完整的底層機器視覺函數庫,可用來建構完整的高性能2D機器視覺系統,可利用Visual Basic、Visual C++或Borland Dephi平臺方便地進行二次開發。其運算速度快,在一臺2 GHz的處理器上尋找和定位一般的零部件不超過10 ms;具有1/40亞像素平移重復精度和0.05度旋轉重復精度。此外,內置的標定模塊能矯正畸變、投影誤差和X-Y像素比誤差,完整的檢測工具包含硬件接口、圖像采集、圖像標定、圖像預處理、幾何定位、顏色檢測、幾何測量、Blob分析、清晰度評價(自動對焦)、模式匹配、邊緣探測等多種多樣,開放式體系結構,支持DirectShow、DCam,GigE vision等多種通用協議,幾乎與市面上所有商業圖像采集卡,以及各種USB、1394以及GigE接口的攝像機兼容。

Cognex公司的VisionPro是一套基于.Net的視覺工具,適用于包括FireWire和CameraLink在內的所有硬件平臺,利用ActiveX控制可快速完成視覺應用項目程序的原模型開發,可使用相應的Visual Basic、VB.Net、C#或C++搭建出更具個性化的應用程序。

LEADTOOLS在數碼圖像開發工具領域中已成為全球領導者之一,是目前功能強大的優秀的圖形、圖像處理開發包,它可以處理各種格式的文件,并包含所有圖形、圖像的處理和轉換功能,支持圖形、圖像、多媒體、條形碼、OCR、Internet、DICOM等等,具有各種軟硬件平臺下的開發包。

此外,還有Dalsa公司的Sherlock檢測軟件,日本的OMRON和Keyence,德國SIEMENS等,這些機器視覺軟件都能提供完整的表面缺陷檢測方法。

國內機器視覺檢測系統開發較晚,成果比較好的是維視智造研發的  VisionBank SVS智能視覺軟件,其表面缺陷檢測、定位、尺寸測量、顏色識別等功能強大,有10大功能模塊,128個檢測工具。

機器視覺軟件-智能視覺軟件

機器視覺系統的研究和應用范圍涵蓋了工業、農業、醫藥、軍事、交通和安全等國民經濟的各個領域,基于機器視覺的產品表面質量檢測在現代自動化生產中得到了越來越多的重視和應用。

機器視覺表面缺陷檢測系統中,圖像處理和分析算法是重要的內容,通常的流程包括圖像的預處理、目標區域的分割、特征提取和選擇及缺陷的識別分類。每個處理流程都出現了大量的算法,這些算法各有優缺點和其適應范圍。如何提高算法的準確性、執行效率、實時性和魯棒性,一直是研究者們努力的方向。

機器視覺表面檢測比較復雜,涉及眾多學科和理論,機器視覺是對人類視覺的模擬,但是目前對人的視覺機制尚不清楚,盡管每一個正常人都是“視覺專家”,但難以用計算機表達自己的視覺過程,因此構建機器視覺檢測系統還要進一步通過研究生物視覺機理來完善,使檢測進一步向自動化和智能化方向發展。


電話4000-400-860 留言 TOP
茄子视频懂你更多app